Skip to main content  Contents  Prev  Up Next  \(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} -- 
      (1,1.71) node[left,magenta]{A} -- 
      (2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) -- 
      (3,1.71) node[right,magenta]{B} -- 
      (1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\) 
Section   8.4   Geometric Series (SQ4) 
 
Learning Outcomes 
Subsection   8.4.1   Activities 
 
Activity   8.4.1 . 
 
Recall from 
Section 8.3  that for any real numbers 
\(a, r\)  and 
\(\displaystyle S_n=\sum_{i=0}^n ar^i\)  that:
\begin{align*}
S_n=\sum_{i=0}^n ar^i &= a+ar+ar^2+\cdots ar^n\\
(1-r)S_n=(1-r)\sum_{i=0}^n ar^i&= (1-r)(a+ar+ar^2+\cdots ar^n)\\
(1-r)S_n=(1-r)\sum_{i=0}^n ar^i&= a-ar^{n+1}\\
S_n&=a\frac{1-r^{n+1}}{1-r}.
\end{align*}
 (a) 
Using 
Definition 8.3.12 , for which values of 
\(r\)  does 
\(\displaystyle \sum_{n=0}^\infty ar^n\)  converges?
\(|r|>1\text{.}\) 
\(|r|=1\text{.}\) 
\(|r|<1\text{.}\) 
The series converges for every value of \(r\text{.}\) 
 
 (b) Where possible, determine what value \(\displaystyle \sum_{n=0}^\infty ar^n\)  converges to.
Fact   8.4.2 . 
 
Geometric series  are sums of the form
\begin{equation*}
\sum_{n=0}^\infty ar^n=a+ar+ar^2+ar^3+\dots\text{,}
\end{equation*}
where \(a\)  and \(r\)  are real numbers. When \(|r|<1\)  this series converges to the value \(\displaystyle\frac{a}{1-r}\text{.}\)  Otherwise, the geometric series diverges.
 
Activity   8.4.3 . 
 
Consider the infinite series
\begin{equation*}
5+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots.
\end{equation*}
 (a) 
Complete the following rearrangement of terms.
\begin{align*}
5+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots & = \unknown + \left(3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots\right)\\
& = \unknown + \sum_{n=0}^\infty \unknown \cdot \left(\frac{1}{\unknown}\right)^n
\end{align*}
 (b) Since \(|\frac{1}{\unknown}|<1\text{,}\)  this series converges. Use the formula \(\sum_{n=0}^\infty ar^n=\frac{a}{1-r}\)  to find the value of this series.
\(\displaystyle \frac{7}{2}\) 
\(\displaystyle \frac{13}{2}\) 
\(\displaystyle 8\) 
\(\displaystyle 10\) 
 
Activity   8.4.4 . 
 
Complete the following calculation, noting \(|0.6|<1\text{:}\) 
\begin{align*}
\sum_{n=2}^\infty 2(0.6)^n &=\left(\sum_{n=0}^\infty 2(0.6)^n\right) - \unknown - \unknown \\
& = \left(\frac{\unknown}{1-\unknown}\right)- \unknown - \unknown 
\end{align*}
What does this simplify to?
  
\(\displaystyle 1.1\) 
\(\displaystyle 1.4\) 
\(\displaystyle 1.8\) 
\(\displaystyle 2.1\) 
 
Activity   8.4.6 . 
 
For each of the following modified geometric series, determine without rewriting if they converge or diverge.
(a) \(\displaystyle -7+\left( -\frac{3}{7}\right)^2+\left( -\frac{3}{7}\right)^3+\cdots\text{.}\) 
(b) \(-6+\left(\frac{5}{4}\right)^3+\left(\frac{5}{4}\right)^4+\cdots\text{.}\) 
(c) \(\displaystyle 4+\sum_{n=4}^\infty \left(\frac{2}{3}\right)^n\text{.}\) 
(d) \(8-1+1-1+1-1+\cdots\text{.}\) 
Activity   8.4.7 . 
 
Find the value of each of the following convergent series.
(a) \(-1 + \sum_{n = 1 }^\infty 2\cdot\left(\frac{1}{2}\right)^n\text{.}\) 
(b) \(\displaystyle -7+\left( -\frac{3}{7}\right)^2+\left( -\frac{3}{7}\right)^3+\cdots\text{.}\) 
(c) \(\displaystyle 4+\sum_{n=4}^\infty \left(\frac{2}{3}\right)^n\text{.}\) 
Subsection   8.4.2   Videos 
 
Figure   179.    Video: Determine if a geometric series converges, and if so, the value it converges to.
Subsection   8.4.3   Exercises